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Abstract. The preference of a concave nontransitive consumer is represented by a skew-symmetric
and concave-convex bifunction on the set of all commodity bundles. This paper characterizes finite
sets of demand observations that are consistent with the demand behavior of such kind of consumer
by a generalized monotonicity property.
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1. Introduction

The traditional theory of consumer demand is based on the assumption that a con-
sumer’s choice is derived from the utility maximization hypothesis. More precisely,
it is assumed that a consumer’s taste can be described by a real-valued function u
defined on the set R

�+ of all possible consumption bundles of � commodities, i.e. for
any x ∈ R

�+, u(x) is interpreted as the subjective value (utility) that the consumer
assigns to the consumption vector x. Given a set of feasible alternatives X ⊆ R

�+,
the consumer chooses a bundle x∗ ∈ X such that u(x∗) � u(x) for all x ∈ X, i.e.
x∗ maximizes u on X.

How can this hypothesis be tested in a competitive environment? Suppose that
the consumer is observed to buy the bundle x at the price vector p ∈ R

�++. Then
any commodity vector y that is not more expensive than x is also affordable at p.
Thus, if the consumer maximizes a utility function u, y cannot have a higher utility
level than x. This argument is extended as follows.

Assume that there are finitely many demand observations (pi, xi), i.e. xi is
demanded at prices pi for i = 1, . . . , n. Then u : R

�+ → R rationalizes these
data, if for i = 1, . . . , n and every x ∈ R

�+

pixi � pix implies u(xi) � u(x).

Hence, observed behavior is consistent with the utility maximization hypothesis
if there exists a rationalizing utility function. The question is whether there are
testable conditions for this consistency.

� I am grateful to Luigi Brighi and two anonymous referees for their helpful comments and
suggestions.
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Of course, there is a trivial answer if no restriction on the utility function is
imposed. Obviously, any constant function u rationalizes any given set of observa-
tions. Put differently, we look for a nondegenerate rationalization, preferably with
some nice additional properties.

A natural requirement for u to be nontrivial is that u is locally nonsatiated, i.e.,
for every x ∈ R

�+ and every neighborhood N of x, there is some y ∈ N such that
u(y) > u(x). An even stronger condition is obtained by the natural assumption that
all commodities are desirable: u is called monotone if x > y implies u(x) > u(y)

for all x, y ∈ R
�+.

The following characterization of rationalizability has been stated as Afriat’s
Theorem in Varian (1982). Its origin is Afriat (1967).

THEOREM 1. Let D = {(pi, xi) | i ∈ I } be a finite set of demand observations.
Then the following conditions are equivalent:
(i) There exists a locally nonsatiated utility function that rationalizes the data.
(ii) The observations satisfy the ‘Generalized Axiom of Revealed Preference

(GARP)’, i.e. for any k observations (p1, x1), . . . , (pk, xk) ∈ D the inequalit-
ies

pi(xi+1 − xi) � 0 for i = 1, . . . , k − 1

imply that pk(x1 − xk) � 0.
(iii) There exist real numbers ui, πi > 0 for every i ∈ I that satisfy the ‘Afriat

inequalities’

ui � uj + πjpj (xi − xj ) for all i, j ∈ I.
(iv) There exists a continuous, concave, and monotone utility function that ration-

alizes the data.

This is a remarkable result. First, it characterizes consistency with the utility
maximization hypothesis by the testable conditions (ii) or (iii). Second, it shows
that if the data can be rationalized by any locally nonsatiated utility function at all,
then they can be rationalized by a utility function with very nice properties.

On the other hand, it is well known that empirical studies have not confirmed
that consumers behave as utility maximizers. Put differently, consumers often do
not act in accordance with a transitive preference relation.

The aim of this paper is to provide a characterization in the nontransitive case
that is analogous to Afriat’s theorem. For this purpose we employ the concept
of a nontransitive consumer as introduced by Shafer (1974). He has shown that
preferences which are not necessarily transitive can be numerically represented by
a skew-symmetric function r : R

�+ × R
�+ → R. Such a representation generalizes

the notion of utility in the sense that r can be defined by r(x, y) = u(x) − u(y)

if the consumer’s preference is described by a utility function u. Thus, a concave
utility function u corresponds to a representation r that is concave in the first argu-
ment (resp. convex in the second argument). A consumer whose preference can be
represented by such a function will be called a concave nontransitive consumer.
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In the next section, the notion of a nontransitive consumer is described more
precisely. Section 3 contains the main result. It turns out that finitely many ob-
servations are consistent with the behavior of a concave nontransitive consumer if
and only if they satisfy a generalized monotonicity condition which will be called
monotone transformability . Finally, Section 4 relates this property to two other
concepts of generalized monotonicity that have been introduced by Daniilidis and
Hadjisavvas (1999).

2. The nontransitive consumer

Let the preference of a consumer be described by a binary relation R on the set R
�+

of all possible consumption bundles. For x, y ∈ R
�+, xRy is interpreted as ‘x is at

least as good as y’ or ‘x is weakly preferred to y’. It is assumed that the consumer
is able to compare any two bundles, i.e., that R is complete:

For all x, y ∈ R
�
+ : xRy ∨ yRx.

In contrast to the traditional theory, R is not necessarily transitive. Following
Shafer (1974), we call the consumer nontransitive although it does not mean that
transitivity is excluded.

Recall that for a transitive preference R a real-valued function u defined on R
�+

is called a utility representation of R, if and only if for all x, y ∈ R
�+

xRy ⇔ u(x) � u(y).

The following extension to the nontransitive consumer has been introduced by
Shafer (1974).

DEFINITION 1. A function r: R
�+ × R

�+ → R is a numerical representation of
the preference R if for all x, y ∈ R

�+:

xRy ⇔ r(x, y) � 0, (1)

r(x, y) = −r(y, x). (2)

Clearly, if u is a utility representation ofR then ru, defined by ru(x, y) = u(x)−
u(y), represents R in the sense of Definition 1.

It is also obvious that any preference R can be represented. Define the strict
preference relation P by xPy iff xRy ∧ ¬yRx and the indifference relation I by
xIy iff xRy∧yRx. Completeness ofR implies that R

�+×R
�+ is equal to the disjoint

union P ∪ I ∪ P−1. Since R = P ∪ I , R is represented by the function r which
takes the values 1 on P , 0 on I , and −1 on P−1.

On the other hand, any skew-symmetric function r: R
�+ × R

�+ → R induces
a preference Rr that is represented by r (simply define xRry by r(x, y) � 0).
If r is continuous then Rr is continuous, i.e., Rr is closed in R

�+ × R
�+. Con-

versely, as shown by Shafer (1974), any continuous preference has a continuous
representation.
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These results show that a (continuous) nontransitive consumer can be equiva-
lently described by a complete (continuous) binary relation or by a (continuous)
skew-symmetric bifunction on R

�+. Of course, like in traditional utility theory,
the relationship is not one-to-one since any sign-preserving transformation of a
numerical representation of R also represents R.

The demand theory of the nontransitive consumer in a competitive environment
is also analogous to the traditional approach. Assume that the � commodity prices
are given by a price vector p ∈ R

�++ and that the consumer’s wealth is w � 0.
Then the consumer chooses a consumption bundle in the budget set

B(p,w) = {x ∈ R
�
+ | px � w}

that is weakly preferred to all other bundles in B(p,w). If the preference is repres-
ented by r, this is equivalent to the choice of x∗ ∈ B(p,w) such that

r(x∗, x) � 0 for all x ∈ B(p,w).
x∗ is called an optimal commodity bundle or a demand vector at the price–wealth
pair (p,w). The problem of finding such an x∗ has been called an equilibrium
problem by Blum and Oettli (1994).

It is well known that, in contrast to utility maximization, continuity of r is not
sufficient for the existence of an optimal bundle. However, as already shown by
Shafer (1974), the problem is solvable if, in addition, r is concave in the first
argument or, equivalently, r is convex in the second argument. This and some other
important properties are put together in

DEFINITION 2. A representation r is called concave–convex if for every x ∈ R
�+

the function r(·, x) : R
�+ → R is concave, nonsatiated if for every x ∈ R

�+ there
exists y ∈ R

�+ such that r(y, x) > 0, monotone if for all x, y, z ∈ R
�+ : x > y

implies r(x, z) > r(y, z).
A consumer is called concave (resp. nonsatiated, monotone) if his preference

representation is concave–convex (resp. nonsatiated, monotone).

It is easy to see that a monotone consumer never chooses a bundle in his budget
set B(p,w) that is less expensive than w. Moreover, an optimal bundle x∗ in
B(p,w) is strictly preferred to all x such that px < w. Actually, the same conclu-
sions can be drawn for a nonsatiated, concave consumer as shown by the following

PROPOSITION 1. Let r be a nonsatiated, concave-convex representation and let
x∗ be an optimal bundle in B(p,w). Then px∗ = w and r(x∗, x) > 0 for all x
such that px < w.

Proof. Consider x, z ∈ R
�+ such that r(x, z) � 0. Since r is nonsatiated, there

exists y ∈ R
�+ such that r(y, z) > 0. Concavity of r in the first argument implies

that r(λx + (1 − λ)y, z) � λr(x, z)+ (1 − λ)r(y, z) > 0 for all λ ∈ [0, 1[.
Hence, it follows from r(x, z) � 0 that there are x′ ∈ R

�+ arbitrarily close to x
such that r(x′, z) > 0.
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Now the claim is easily proved. If we assume that px∗ < w, then r(x∗, x∗) = 0
implies the existence of x′ with px′ < w and r(x′, x∗) > 0, a contradiction to the
optimality of x∗.

In order to prove the second part, assume that px < w and r(x∗, x) � 0 or,
equivalently, r(x, x∗) � 0. Again, the existence of x′ with px′ < w and r(x′, x∗) >
0 contradicts the optimality of x∗. �

3. The main result

Assume that a consumer demands the commodity bundle xi at the price vector
pi, i = 1, . . . , n. When are these n demand observations consistent with a prefer-
ence maximizing behavior of a concave consumer?

In order to be more precise, we give the following

DEFINITION 3. A preference representation r rationalizes the set of observations
{(pi, xi) | i = 1, . . . , n} if for all i and all x ∈ R

�+

pixi � pix implies r(xi , x) � 0.

The existence of a rationalizing concave-convex representation r is of course
trivial if no further properties of r are required. Indeed, if the consumer is indiffer-
ent between all bundles, i.e., r(x, y) = 0 for all x, y, then any set of observations is
rationalized by r. To exclude such a degenerate case, a natural requirement is that
the preference should be nonsatiated. This is taken into account by the next result.

THEOREM 2. Let {(pi, xi) | i = 1, . . . , n} be a finite set of demand observations.
Then the following conditions are equivalent:
(i) There exists a nonsatiated, concave-convex representation that rationalizes the

observations.
(ii) For any set of real numbers λij � 0(1 � i, j � n) such that λij = λji , the

inequalities

n∑
j=1

λijpi(xj − xi) � 0 for i = 1, . . . , n

imply the equalities

n∑
j=1

λijpi(xj − xi) = 0 for i = 1, . . . , n.

(iii) There exist real numbers πi > 0(1 � i � n) such that for all i, j ∈ {1, . . . , n}:
(πipi − πjpj )(xi − xj ) � 0.
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(iv) There exist real numbers ρij (1 � i, j � n) with ρji = −ρij and πi > 0(1 �
i � n) such that for all i, j ∈ {1, . . . , n} :

ρij � πjpj (xi − xj ).

(v) There exists a continuous, monotone, concave-convex representation that ra-
tionalizes the observations.

Proof. (i) ⇒ (ii): It will be shown that a violation of (ii) leads to a contra-
diction. If (ii) does not hold, then there are λij � 0 with λij = λji such that∑n

j=1 λkjpk(xj − xk) < 0 for some k and
∑n

j=1 λijpi(xj − xi) � 0 for all i �= k.
Define I = {i | ∑n

j=1 λij �= 0} and λ′
ij = λij /

∑n
j=1 λij for i ∈ I . Since∑n

j=1 λ
′
ij = 1, the convex combinations x̄i = ∑n

j=1 λ
′
ij xj are elements in R

�+.
It follows that pi(x̄i − xi) � 0 for all i ∈ I and pk(x̄k − xk) < 0.

If r rationalizes the observations then r(x̄i , xi ) � 0 for all i ∈ I and, since
pkx̄k < pkxk , r(x̄k, xk) < 0 by Proposition 1. Concavity of r in the first argument
implies

n∑
j=1

λ′
ij r(xj , xi) � 0 and

n∑
j=1

λ′
kj r(xj , xk) < 0.

Hence,
∑n

j=1 λij r(xj , xi) � 0 for i ∈ I and
∑n

j=1 λkj r(xj , xk) < 0. Taking into
account that

∑n
j=1 λij r(xj , xi) = 0 for i /∈ I , we obtain

n∑
i=1




n∑
j=1

λij r(xj , xi)


 =

n∑
i,j=1

λij r(xj , xi) < 0.

On the other hand, λij = λji and r(xj , xi) = −r(xi , xj ) implies
∑n

i,j=1 λij
r(xj , xi) = 0, i.e., a contradiction has been derived.
(ii)⇒(iii): For i, j ∈ {1, . . . , n}, i < j , define aij ∈ R

n by

a
ij

k =




pi(xj − xi) k = i

pj (xi − xj ) k = j

0 k �= i, j.

Consider the closed convex cone in R
n that is generated by these vectors aij ,

i.e., the set C = {∑i<j µij a
ij | µij � 0, i < j}. Observe that the k-th component

of an element of C is given by
∑
i<j

µij a
ij

k =
∑
k<j

µkjpk(xj − xk)+
∑
i<k

µikpk(xi − xk)

=
n∑
j=1

λkjpk(xj − xk),
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where λkj = µkj for k < j , λkj = µjk for j < k, and λkj = 0 for k = j . Hence,
λkj = λjk for k, j ∈ {1, . . . , n}.

Condition (ii) guarantees that C ∩ R
n− = {0}. By a well-known separation

theorem for closed convex cones (see, e.g., Nikaido (1968), Theorem 3.6), there
exists π ∈ R

n++ such that πaij � 0 for all aij . Since

πaij = πipi(xj − xi)+ πjpj (xi − xj ) = −(πipi − πjpj )(xi − xj ),

we have proved (iii).
(iii)⇒(iv): Assume that (iii) holds and define

ρij = 1

2

[
πipi(xi − xj )− πjpj (xj − xi)

]
.

Obviously, ρij = −ρji for all i, j . Furthermore, we obtain

ρij =1

2

[
πipi(xi − xj )+ πjpj (xi − xj )

]

=1

2

[
πipi(xi − xj )− πjpj (xi − xj )+ 2πjpj (xi − xj )

]
.

By (iii), πipi(xi − xj )− πjpj (xi − xj ) = (πipi − πjpj )(xi − xj ) � 0. Hence,
ρij � πjpj (xi − xj ) for all i, j .
(iv)⇒(v): Let (iv) be satisfied and define for x, y ∈ R

�+

rij (x, y) = ρij + πipi(x − xi)− πjpj (y − xj ).

Since ρji = −ρij , it follows that

−rij (x, y) = ρji + πjpj (y − xj )− πipi(x − xi) = rji(y, x).

Now let" = {λ ∈ R
n+ | ∑n

i=1 λi = 1} be the (n−1)-dimensional standard simplex
and let r : R

�+ × R
�+ → R be defined by

r(x, y) := min
λ∈" max

µ∈"
∑
i,j

λiµj rij (x, y) = max
µ∈"

min
λ∈"

∑
i,j

λiµj rij (x, y),

where the latter equality is valid by the famous Minimax Theorem of von Neumann
(1928). It will be shown that r fulfills the requirements stated in condition (v).

Since −rij (x, y) = rji(y, x), we obtain

−r(x, y) = − min
λ∈" max

µ∈"
∑
i,j

λiµj rij (x, y) = max
λ∈"

min
µ∈"

∑
i,j

−λiµj rij (x, y)

= max
λ∈"

min
µ∈"

∑
j,i

µjλirji(y, x) = r(y, x),

i.e., r is skew-symmetric.
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Continuity of r follows by applying twice the maximum theorem in Berge
(1997), Chapter VI, §3. Since rij (x, y) is continuous in x and y for all i and j ,
the function F : "2 × R

l+ × R
l+ → R defined by

F(λ,µ, x, y) =
∑
i,j

λiµirij (x, y)

is also continuous. By the maximum theorem, max
µ∈"

F(λ,µ, x, y) = G(λ, x, y)

is continuous in λ, x, and y. Applying the maximum theorem once again to −G
yields the continuity of min

λ∈" G(λ, x, y) = r(x, y) with respect to x and y.

In order to prove that r is monotone, consider x, y, z ∈ R
�+ such that x > y.

Since all price vectors pi are strictly positive, rij (x, z) > rij (y, z). This implies
max
µ∈"

∑
i,j λiµj rij (x, z) > max

µ∈"
∑

i,j λiµj rij (y, z) for all λ ∈ " and thus

min
λ∈" max

µ∈"
∑
i,j

λiµj rij (x, z) > min
λ∈" max

µ∈"
∑
i,j

λiµj rij (y, z).

Hence, r(x, z) > r(y, z), i.e. r is monotone.
Consider now for fixed y ∈ R

�+ and λ ∈ " the function rλ : R
�+ → R defined

by

rλ(x) = max
µ∈"

∑
i,j

λiµj rij (x, y).

Then rλ(x) = max
µ∈"

∑
i

λi
∑
j

[µjρij + µjπipi(x − xi)− µjπjpj (y − xj )]

= max
µ∈"

∑
i

λi[πipi(x − xi)+
∑
j

µj (ρij − πjpj (y − xj ))]

= max
µ∈"

[
∑
i

λiπipi(x − xi)+
∑
i,j

λiµj (ρij − πjpj (y − xj ))]

=
∑
i

λiπipi(x − xi)+ max
µ∈"

∑
i,j

λiµj (ρij − πjpj (y − xj )),

i.e., rλ is an affine function of x. Hence, r(x, y) = min
λ∈" rλ(x) is concave in x since

it is a minimum of affine functions of x.
It remains to show that r rationalizes the demand observations {(pi, xi) | i =

1, . . . , n}. Consider an arbitrary observation (pk, xk) and y ∈ R
�+ such that pkxk �

pky. It has to be proved that r(xk, y) � 0. By definition,

r(xk, y) = max
µ∈"

min
λ∈"

∑
i,j

λiµj rij (xk, y)

� min
λ∈"

∑
i,j

λiµ
k
j rij (xk, y) = min

λ∈"
∑
j

λirik(xk, y),
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where µkj = 0 for j �= k and µkk = 1.
Thus, r(xk, y) � 0 if rik(xk, y) � 0 for all i. By definition, rik(xk, y) = ρik +

πipi(xk − xi) − πkpk(y − xk). By assumption, πkpk(y − xk) � 0, and, by (iv),
ρki � πipi(xk−xi) or, equivalently, ρik+πipi(xk−xi) = −ρki+πipi(xk−xi) � 0.
Hence, rik(xk, y) � 0 for all i.
(v)⇒(i): trivial. �

As in Theorem 1, violations of continuity and monotonicity cannot be detec-
ted by a finite number of observations. Indeed, the equivalence between (i) and
(v) shows that rationalizability by any nontrivial concave–convex representation
implies rationalizability by one that is also continuous and monotone. Conditions
(ii), (iii), and (iv) provide testable conditions on the consistency of the data with a
preference maximizing behavior of a concave nontransitive consumer. While (iv) is
the analogue to (iii) of Theorem 1, (ii) or (iii) replace GARP. However, in contrast
to the latter property, it is difficult to give a revealed preference interpretation of
these conditions. In view of (iii), the following definition seems to be appropriate.

DEFINITION 4. A finite set {(pi, xi) | i = 1, . . . , n} of demand observations is
called monotone transformable if one of the equivalent conditions (ii),(iii),(iv) in
Theorem 2 is satisfied.

In the next section, this property will be related to other notions of generalized
monotonicity.

4. Some relationships

Consider an arbitrary, not necessarily finite, demand relation D ⊆ R
�++ × R

�+,
which obviously generalizes the case of finitely many demand observations. Recall
the following

DEFINITION 5. A demand relation D is called
(1) pseudomonotone, if for all (p, x), (q, y) ∈ D

p(y − x) � 0 implies q(y − x) � 0,

(2) properly pseudomonotone , if for any (p1, x1), . . . , (pn, xn) ∈ D and any x =∑n
j=1 λjxj with

∑n
j=1 λj = 1 and λj > 0 (1 � j � n) the inequalities

pi(x − xi) � 0 for i = 1, . . . , n

imply the equalities

pi(x − xi) = 0 for i = 1, . . . , n,

(3) cyclically pseudomonotone, if for any (p1, x1), . . . , (pn, xn) ∈ D the inequal-
ities

pi(xi+1 − xi) � 0 for i = 1, . . . , n− 1

imply that pn(x1 − xn) � 0.
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Notice that, in contrast to most of the literature, these definitions generalize
the notion of a nonincreasing (instead of nondecreasing) real valued function of
one variable. While (1) is a well known standard concept, (2) and (3) have been
introduced by Daniilidis and Hadjisavvas (1999). They have shown that (1) and (2)
are equivalent if the set X = {x ∈ R

�+ | ∃p ∈ R
�++ : (p, x) ∈ D} is convex. Notice

also that in the case of a finite D = {(p1, x1), ..., (pn, xn)} the implication in (2)
has to be satisfied for all finite subsets ofD, i.e., it is not sufficient to consider only
proper convex combinations of x1, ..., xn.

It can be easily seen that a monotone transformable finite demand relation
is pseudomonotone. Indeed, if (pi, xi), (pj , xj ) are two observations such that
pj(xi − xj ) � 0, then, by condition (iii) in Theorem 2, it follows that πipi(xi −
xj ) � πjpj (xi − xj ) � 0. Hence, since πi > 0, pi(xi − xj ) � 0.

A stronger result is given by

PROPOSITION 2. Let D = {(pi, xi) | i = 1, . . . , n} be a finite demand relation.
(1) If D is cyclically pseudomonotone, then D is monotone transformable.
(2) If D is monotone transformable, then D is properly pseudomonotone.

Proof. (1) Obviously, cyclic pseudomonotonicity ofD is equivalent to condition
(ii) in Theorem 1. By equivalence with (iii) of Theorem 1, there are ui, πi > 0 (i =
1, . . . , n) such that ui � uj + πipj (xi − xj ) for all i, j . Defining ρij = ui − uj
yields condition (iv) of Theorem 2, i.e. D is monotone transformable.

(2) It will be shown that condition (ii) of Theorem 2 implies proper pseudo-
monotonicity of D.

In order to prove that D is properly pseudomonotone, assume that for J ⊆
{1, . . . , n}, x = ∑

j∈J λjxj with
∑

j∈J λj = 1 and λj > 0 (j ∈ J )
pi(x − xi) =

∑
j∈J

λjpi(xj − xi) � 0 for i ∈ J.

Setting λi = 0 for i ∈ {1, . . . , n}, i /∈ J , this implies

λi
∑
j∈J

λjpi(xj − xi) =
n∑
j=1

λiλjpi(xj − xi) � 0

for i = 1, . . . , n.
If we define λij = λiλj for i, j ∈ {1, . . . , n}, then λij = λji and, by (ii) of

Theorem 2, it follows that
n∑
j=1

λiλjpi(xj − xi) = λi
∑
j∈J

λjpi(xj − xi) = 0

for i = 1, . . . , n.
Since λi > 0 for i ∈ J , we finally obtain

∑
j∈J

λjpi(xj − xi) = pi(x − xi) = 0
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for i ∈ J , i.e. D is properly pseudomonotone. �
We conclude by giving two examples showing that the reverse implications

of (1) and (2) in Proposition 2 do not hold, i.e. that monotone transformabil-
ity is actually different from cyclic pseudomonotonicity as well as from proper
pseudomonotonicity.

EXAMPLE 1. Consider the following three demand observations for three com-
modities:

(p1, x1) = ((2, 1, 3), (1, 2, 2)),

(p2, x2) = ((3, 2, 1), (2, 1, 2)),

(p3, x3) = ((1, 3, 2), (2, 2, 1)).

These observations are monotone transformable (even monotone), since

(p1 − p2)(x1 − x2) = (−1,−1, 2)(−1, 1, 0) = 0

(p2 − p3)(x2 − x3) = (2,−1,−1)(0,−1, 1) = 0

(p3 − p1)(x3 − x1) = (−1, 2,−1)(1, 0,−1) = 0

On the other hand, there is a cycle given by

p2(x1 − x2) = p3(x2 − x3) = p1(x3 − x1) = −1,

i.e., the observations are not cyclically pseudomonotone. �
The second example is less obvious. Indeed, it can be shown that proper pseudo-

monotonicity implies monotone transformability if there are not more than three
observations.

EXAMPLE 2. Consider the following four demand observations for four com-
modities:

(p1, x1) = ((2, 1, 1, 4), (1, 2, 2, 2)),

(p2, x2) = ((4, 2, 1, 1), (2, 1, 2, 2)),

(p3, x3) = ((1, 4, 2, 1), (2, 2, 1, 2)),

(p4, x4) = ((1, 1, 4, 2), (2, 2, 2, 1)).

The matrix A = (aij )i,j=1,...,4 with aij = pi(xj − xi) is easily calculated and given
by

A =




0 1 1 −2
−2 0 1 1
1 −2 0 1
1 1 −2 0


 .
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By setting λij = λji = 1 for {i, j} = {1, 2}, {2, 3}, {3, 4}, {1, 4} and λij = 0
otherwise, it follows that

4∑
j=1

λij aij = −1 for i = 1, . . . , 4.

Thus, condition (ii) of Theorem 2 is violated, i.e. the observations are not monotone
transformable.

In order to prove that they are properly pseudomonotone, it has to be shown that
for arbitrary λ1, . . . , λ4 � 0 such that

∑4
i=1 λi = 1 the inequalities

λi

4∑
j=1

λjaij � 0 for i =, . . . , 4

imply the equalities

λi

4∑
j=1

λjaij = 0 for i = 1, . . . , 4.

Assume the inequalities to be satisfied but that λi
∑4

j=1 λjaij < 0 for some i.

Without loss of generality, let i = 1, i.e., λ1
∑4

j=1 λja1j = λ1(λ2 + λ3 − 2λ4) < 0.

This implies λ1 > 0 and λ2 + λ3 < 2λ4, hence, λ4 > 0. Since λ4
∑4

j=1 λja4j =
λ4(λ1 +λ2 − 2λ3) � 0, it follows that 0 < λ1 +λ2 � 2λ3, i.e. λ3 > 0. By applying
the same argument to the third inequality, we obtain λ2 > 0. Since all λi > 0,∑4

j=1 λjaij � 0 for all i, with a strict inequality for at least one i.
However, adding up these inequalities yields 0 = (λ2 + λ3 − 2λ4)+ (−2λ1 +

λ3 + λ4)+ (λ1 − 2λ2 + λ4)+ (λ1 + λ2 − 2λ3) < 0.
Thus, the assumption that λi

∑4
j=1 λjaij < 0 for some i has led to a contradic-

tion, i.e., all inqualities are satisfied as equalities. �
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